Aggregation of Classifiers: A Justifiable Information Granularity Approach
نویسندگان
چکیده
In this study, we introduce a new approach to combine multi-classifiers in an ensemble system. Instead of using numeric membership values encountered in fixed combining rules, we construct interval membership values associated with each class prediction at the level of meta-data of observation by using concepts of information granules. In the proposed method, uncertainty (diversity) of findings produced by the base classifiers is quantified by interval-based information granules. The discriminative decision model is generated by considering both the bounds and the length of the obtained intervals. We select ten and then fifteen learning algorithms to build a heterogeneous ensemble system and then conducted the experiment on a number of UCI datasets. The experimental results demonstrate that the proposed approach performs better than the benchmark algorithms including six fixed combining methods, one trainable combining method, Adaboost, Bagging, and Random Subspace.
منابع مشابه
A comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملThe Principle of Justifiable Granularity and an Optimization of Information Granularity Allocation as Fundamentals of Granular Computing
Granular Computing has emerged as a unified and coherent framework of designing, processing, and interpretation of information granules. Information granules are formalized within various frameworks such as sets (interval mathematics), fuzzy sets, rough sets, shadowed sets, probabilities (probability density functions), to name several the most visible approaches. In spite of the apparent diver...
متن کاملCascade Classifiers for Hierarchical Decision Systems
Hierarchical classifiers are usually defined as methods of classifying inputs into defined output categories. The classification occurs first on a low-level with highly specific pieces of input data. The classifications of the individual pieces of data are then combined systematically and classified on a higher level iteratively until one output is produced. This final output is the overall cla...
متن کاملLogical analysis of data: classification with justification
Learning from examples is a frequently arising challenge, with a large number of algorithmsproposed in the classification and data mining literature. The evaluation of the quality ofsuch algorithms is usually carried out ex post, on an experimental basis: their performanceis measured either by cross validation on benchmark data sets, or by clinical trials. None ofthese approache...
متن کاملA COGNITIVE STYLE AND AGGREGATION OPERATOR MODEL: A LINGUISTIC APPROACH FOR CLASSIFICATION AND SELECTION OF THE AGGREGATION OPERATORS
Aggregation operators (AOs) have been studied by many schol- ars. As many AOs are proposed, there is still lacking approach to classify the categories of AO, and to select the appropriate AO within the AO candidates. In this research, each AO can be regarded as a cognitive style or individual dierence. A Cognitive Style and Aggregation Operator (CSAO) model is pro- posed to analyze the mapping ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.05411 شماره
صفحات -
تاریخ انتشار 2017